Final Exam

Name:

1	/15
2	/15
3	/15
4	/15
5	/15
6	/15
7	/15
8	/10

1. Carnot cycle: Two identical bodies with temperature independent heat capacities C are initially at different temperatures T_H and T_C . A Carnot cycle is run between them (with infinitesimal steps) until they have been reduced to a common temperature T_F . [15 points]
a) Does the efficiency of this engine change over time? [5 points]
b) In a Carnot cycle, the entropy change is zero per cycle as we saw in the previous exam. Find T_F in terms of T_H and T_C . The answer is not $(T_H + T_C)/2$. Consider the entropy change in the hot and cold reservoir: these have to be equal. Integrate from initial temperatures to find the solution. [5 points]
c) Find the total work done on the outside world in this process. Is it positive or negative? [5 points]

2. Consider a Lenoir cycle as given by the figure below. We note that efficiency can be given by (Heat added)-(Heat rejected)/Heat added. Relevant temperatures are T_1 , T_2 , T_3 . (Isentropic process = reversible adiabatic process). [15 points]

(a) Calculate T₃ in terms of T₂ [5 points]

(b) When is heat being added? [2.5 points]

(c) When is heat being rejected? [2.5 points]

(d) Calculate efficiency in terms of T_1 , T_2 , and T_3 . as well as Nk (assume monoatomic gas is involved) [5 points] [Hint: C_v =3/2 Nk, C_p =5/2Nk, dU+pdV = ΔH = $C_p\Delta T$]

3. Manipulation of thermodynamic quantities [15 points]

In a weakly interacting gas of Bose particles at low temperature the expansion coefficient α and the isothermal compressibility \mathcal{K}_T are given by

$$\alpha \equiv \frac{1}{V} \frac{\partial V}{\partial T} \Big|_{P} = \frac{5}{4} \frac{a}{c} T^{3/2} V^{2} + \frac{3}{2} \frac{b}{c} T^{2} V^{2}$$

$$\mathcal{K}_{T} \equiv -\frac{1}{V} \frac{\partial V}{\partial P} \Big|_{T} = \frac{1}{2c} V^{2}$$

where a, b and c are constants. It is known that the pressure goes to zero in the limit of large volume and low temperature. Find the equation of state P(T, V).

Hint: You may use that (dP/dT) at constant volume $=\alpha/\kappa_T$

4. Consider a	simple	harmonic	oscillator	with	energy	given	by	E =	ոћω,	where	ω	is	a
constant give	n by sqrt	(k/m). [15	points]										

(a) Calcu	ılate it:	s partition	function.	You may	utilize	this	formula	below	to	simplify	your
infinite	sum.	$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-a}$	\bar{r} [3 poin	ıts]							

(b) What is its energy at some temperature T? [3 points]

(c) What is the meaning of <n>? (Average n) It is not an occupation number. [3 points]

(d) Calculate heat capacity of this simple harmonic oscillator. [3 points]

(e) Calculate heat capacity at high temperature (kT>> $\hbar\omega)$ [3 points]

5. If a partition function for a single particle is given by Z, find out the partition function for N particles [15 points]
(a) provided that they are distinguishable particles [7.5 points]
(b) provided that they are indistinguishable particles [7.5 points]

6. Consider a system composed of N spins in which energy levels are defined to be - μ B, 0, μ B and magnetic moment is for these levels are given by μ , 0, - μ .
(a) What is the partition function? [3 points]
(b) What is the probability of finding a spin with magnetic moment of 0 at infinite temperature? [3 points]
(c) What is the average energy for this system? [3 points]
(d) What is the Helmholtz free energy of this system? [3 points]
(e) What is the entropy of the system? [3 points]

7. Consider a system consisting of a single hydrogen atom/ion, which has two possible states: unoccupied with no electrons and occupied with one electron present. i.e. unoccupied state has zero energy with zero electrons and occupied state has energy -I and has one electron in it with a chemical potential of μ . Calculate the ratio of the probability of these two states. You may use μ =-kT ln(V/NV_Q) to simplify the formula. Simplify such that there is only one exponential in the final ratio. You can assume that electrons behave like an ideal gas (PV=NkT). Use only P, V_Q, k, T, I to express the ratio. [15 points]

8. Calculate the densities of states for a 1D electron gas given that the allowed k vectors are $k=(2\pi/L)^*m$ with m being all integers. Hints: 1. calculate the density of states in therms of k, 2. use the energy formula $(\hbar k)^2/2m$, 3. use $N=2^*2k^*D(k)$ [10 points]